This chapter covers Logic and Truth Tables, fundamental concepts in discrete mathematics and computer science. We explore propositional logic, logical operators, truth tables, and logical equivalences that form the foundation of mathematical reasoning and computer programming. 本章围绕逻辑与真值表展开,涵盖命题逻辑、逻辑运算符、真值表与逻辑等价等核心内容,为数学推理与程序设计打下基础。
Chapter 4 content is being updated. For the latest and most complete materials, visit the Notion page below. 第四章内容正在持续更新中。要获取最新、最完整的内容,请访问下方的 Notion 页面。
View the latest Chapter 4 content on Notion ↗ 查看 Notion 中的第四章最新内容 ↗Propositional logic studies logical relations between statements that can be true or false. 命题逻辑是离散数学的基础,它研究命题(可以判断真假的陈述)之间的逻辑关系。
A proposition is a statement that can be clearly judged as true (T) or false (F).命题是一个可以明确判断为真(T)或假(F)的陈述。
Example of a proposition:命题示例: "Today is Monday"“今天是星期一”
Not a proposition:非命题示例: "How is the weather today?"“今天天气好吗?”
Logical operators combine simple propositions to form compound propositions. Main operators: 逻辑运算符用于组合简单命题形成复合命题。以下是主要的逻辑运算符:
如果 p 为真,则 ¬p 为假;如果 p 为假,则 ¬p 为真。
只有当 p 和 q 都为真时,p ∧ q 才为真。
当 p 或 q 中至少有一个为真时,p ∨ q 为真。
只有当 p 为真且 q 为假时,p → q 才为假。
A truth table shows the truth value of an expression under all input combinations: 真值表显示了逻辑表达式在所有可能的输入组合下的真值:
| p | q | ¬p | p ∧ q | p ∨ q | p → q |
|---|---|---|---|---|---|
| T | T | F | T | T | T |
| T | F | F | F | T | F |
| F | T | T | F | T | T |
| F | F | T | F | F | T |
Enter any logical expression to generate a full truth table. Step-by-step parsing helps you understand the evaluation. 输入任意逻辑表达式,立即生成完整的真值表。支持分步解析,帮助您理解复杂逻辑表达式的计算过程。
Local content for Chapter 4 will include:第四章的本地内容将包括:
Check back regularly for updates, or visit the Notion page for real-time content. 请定期查看更新,或访问 Notion 页面获取实时内容。