Back to Home返回主页

Chapter 2第2章

Chapter Summary本章概述

This chapter delves into Relations and Functions, exploring how sets can be related to each other and how functions establish mappings between sets. We cover equivalence relations, partial orders, and function properties essential for advanced mathematical reasoning. 本章聚焦关系与函数,讨论集合之间如何建立关系以及函数如何在集合之间构建映射。内容包括等价关系、偏序关系以及函数的性质,服务于更高层次的数学推理。

Key Concepts:关键概念:
  • • Binary Relations
  • • Function Types
  • • Equivalence Classes
Learning Goals:学习目标:
  • • Analyze relations
  • • Classify functions
  • • Apply theorems
Prerequisites:先修知识:
  • • Chapter 1 content
  • • Set operations
  • • Basic proofs

2.1 Binary Relations2.1 二元关系

A binary relation R from set A to set B is a subset of the Cartesian product A × B.二元关系 R(从集合 A 到集合 B)是笛卡尔积 A × B 的一个子集。

Notation and Properties:记号与性质:

  • R ⊆ A × B - R is a relation from A to BR 是从 A 到 B 的关系
  • aRb or (a,b) ∈ R - a is related to ba 与 b 有关系
  • Reflexive:自反性: ∀a ∈ A, aRa
  • Symmetric:对称性: aRb ⟹ bRa
  • Transitive:传递性: aRb ∧ bRc ⟹ aRc

2.2 Equivalence Relations2.2 等价关系

An equivalence relation is a relation that is reflexive, symmetric, and transitive.等价关系同时满足自反性、对称性与传递性。

Key Properties:关键性质:

  • Partitions the set into disjoint equivalence classes将集合划分为两两不交的等价类
  • Each element belongs to exactly one equivalence class每个元素恰属于一个等价类
  • Equivalence class of a:a 的等价类: [a] = {x ∈ A | xRa}

2.3 Functions2.3 函数

Function Types函数类型

Injective (One-to-one)单射

Different inputs produce different outputs不同输入产生不同输出

f(a) = f(b) ⟹ a = b

Surjective (Onto)满射

Every element in codomain is mapped to陪域中的每个元素都有原像

∀y ∈ B, ∃x ∈ A: f(x) = y

Bijective双射

Both injective and surjective同时具备单射与满射

Has an inverse function

Function Composition函数复合

For functions对于函数 f: A → B and g: B → C:

(g ∘ f)(x) = g(f(x))

The composition g∘f maps from A to C复合函数 g∘f 将 A 映射到 C

Inverse Functions反函数

If f is bijective, then若 f 为双射,则 f⁻¹ exists such that:存在并满足:

  • f⁻¹(f(x)) = x
  • f(f⁻¹(y)) = y

2.4 Practice Problems2.4 练习题

Problem 1: Relation Properties题目1:关系的性质

Consider the relation R on ℤ defined by:考虑定义在 ℤ 上的关系 R: aRb ⟺ a ≡ b (mod 3)

Determine if R is reflexive, symmetric, and transitive.判断 R 是否具备自反、对称和传递性质。

Solution:解:
  • Reflexive:自反:(a ≡ a (mod 3) for all a)(对任意 a,a ≡ a (mod 3))
  • Symmetric:对称:(if a ≡ b (mod 3), then b ≡ a (mod 3))(若 a ≡ b (mod 3),则 b ≡ a (mod 3))
  • Transitive:传递:(if a ≡ b and b ≡ c (mod 3), then a ≡ c (mod 3))(若 a ≡ b 且 b ≡ c,则 a ≡ c(模 3))
  • Conclusion:结论: R is an equivalence relationR 是等价关系

Problem 2: Function Analysis题目2:函数分析

Let f: ℝ → ℝ be defined by定义为 f(x) = x²

Determine if f is injective, surjective, or bijective.判断 f 是否为单射、满射或双射。

Analysis:分析:
  • Injective:单射:(f(-2) = f(2) = 4, but -2 ≠ 2)(f(-2) = f(2) = 4,但 -2 ≠ 2)
  • Surjective:满射:(no x ∈ ℝ such that f(x) = -1)(不存在 x∈ℝ 使 f(x) = -1)
  • Bijective:双射:(neither injective nor surjective)(既非单射也非满射)