2.1 Binary Relations2.1 二元关系
A binary relation R from set A to set B is a subset of the Cartesian product A × B.二元关系 R(从集合 A 到集合 B)是笛卡尔积 A × B 的一个子集。
Notation and Properties:记号与性质:
- R ⊆ A × B - R is a relation from A to BR 是从 A 到 B 的关系
- aRb or (a,b) ∈ R - a is related to ba 与 b 有关系
- Reflexive:自反性: ∀a ∈ A, aRa
- Symmetric:对称性: aRb ⟹ bRa
- Transitive:传递性: aRb ∧ bRc ⟹ aRc
2.2 Equivalence Relations2.2 等价关系
An equivalence relation is a relation that is reflexive, symmetric, and transitive.等价关系同时满足自反性、对称性与传递性。
Key Properties:关键性质:
- Partitions the set into disjoint equivalence classes将集合划分为两两不交的等价类
- Each element belongs to exactly one equivalence class每个元素恰属于一个等价类
- Equivalence class of a:a 的等价类: [a] = {x ∈ A | xRa}
2.3 Functions2.3 函数
Function Types函数类型
Different inputs produce different outputs不同输入产生不同输出
f(a) = f(b) ⟹ a = b
Every element in codomain is mapped to陪域中的每个元素都有原像
∀y ∈ B, ∃x ∈ A: f(x) = y
Both injective and surjective同时具备单射与满射
Has an inverse function
Function Composition函数复合
For functions对于函数 f: A → B and与 g: B → C:
(g ∘ f)(x) = g(f(x))
The composition g∘f maps from A to C复合函数 g∘f 将 A 映射到 C
Inverse Functions反函数
If f is bijective, then若 f 为双射,则 f⁻¹ exists such that:存在并满足:
- f⁻¹(f(x)) = x
- f(f⁻¹(y)) = y
2.4 Practice Problems2.4 练习题
Problem 1: Relation Properties题目1:关系的性质
Consider the relation R on ℤ defined by:考虑定义在 ℤ 上的关系 R: aRb ⟺ a ≡ b (mod 3)
Determine if R is reflexive, symmetric, and transitive.判断 R 是否具备自反、对称和传递性质。
- Reflexive:自反: ✓ (a ≡ a (mod 3) for all a)(对任意 a,a ≡ a (mod 3))
- Symmetric:对称: ✓ (if a ≡ b (mod 3), then b ≡ a (mod 3))(若 a ≡ b (mod 3),则 b ≡ a (mod 3))
- Transitive:传递: ✓ (if a ≡ b and b ≡ c (mod 3), then a ≡ c (mod 3))(若 a ≡ b 且 b ≡ c,则 a ≡ c(模 3))
- Conclusion:结论: R is an equivalence relationR 是等价关系
Problem 2: Function Analysis题目2:函数分析
Let设 f: ℝ → ℝ be defined by定义为 f(x) = x²
Determine if f is injective, surjective, or bijective.判断 f 是否为单射、满射或双射。
- Injective:单射: ✗ (f(-2) = f(2) = 4, but -2 ≠ 2)(f(-2) = f(2) = 4,但 -2 ≠ 2)
- Surjective:满射: ✗ (no x ∈ ℝ such that f(x) = -1)(不存在 x∈ℝ 使 f(x) = -1)
- Bijective:双射: ✗ (neither injective nor surjective)(既非单射也非满射)