代数核心考点冲刺笔记
MATH1131 Lab Test 01 - Algebra 备考专用
向量基础、直线平面方程、几何运算与应用
这个模块是所有后续内容的基础,核心是理解点与向量的关系以及它们如何构成几何图形。
- 从点创向量: 从点A到点B的向量 AB⃗ = B - A
- 共线 (Collinear): 三个或更多的点(如A, B, C)位于同一条直线上
- 平行向量: 两个向量方向相同或相反,即 v₁ = k·v₂(k为非零常数)
-
1
创建相连向量: 计算 AB⃗ = B - A 和 BC⃗ = C - B
→
选择这两个向量是因为它们共享公共点B
-
2
寻找倍数关系: 检查是否存在常数k使得 BC⃗ = k·AB⃗
→
对每个分量检验:kₓ = x₂/x₁,kᵧ = y₂/y₁,kᵧ = z₂/z₁
-
3
得出结论: 如果三个k值相同,则向量平行且共点
→
因此三点共线
给定点: A(1,4,-2), B(4,3,3), C(28,-5,43)
- 计算向量:
AB⃗ = (4-1, 3-4, 3-(-2)) = (3, -1, 5)
BC⃗ = (28-4, -5-3, 43-3) = (24, -8, 40)
- 检查倍数:
x分量: 24/3 = 8
y分量: -8/(-1) = 8
z分量: 40/5 = 8
- 结论: 因为三个k值都是8,所以BC⃗ = 8·AB⃗,三点共线
- 对边关系: 平行四边形的对边平行且等长,即对边向量完全相等
- 顶点顺序: ABCD 和 ADBC 是不同的平行四边形,对边关系完全不同
-
1
画简图,定关系: 根据顶点顺序确定对边
→
如ABCD: 对边是AB⃗与DC⃗,AD⃗与BC⃗
-
2
向量转坐标: 选择一个向量等式并转化
→
如AB⃗ = DC⃗ ⟹ B - A = C - D
-
3
解出未知点: 通过代数移项求解
→
D = C - B + A
例1:平行四边形ADBC
- 顺序:A → D → B → C → A,对边:AD⃗ 和 CB⃗
- 关系:AD⃗ = CB⃗ ⟹ D - A = B - C
- 求解:D = A + B - C
例2:平行四边形ABCD
- 顺序:A → B → C → D → A,对边:AB⃗ 和 DC⃗
- 关系:AB⃗ = DC⃗ ⟹ B - A = C - D
- 求解:D = A - B + C
这个模块是连接几何图形和代数表达式的桥梁,核心在于理解不同形式的方程以及它们之间的转换。
- 笛卡尔式: (x-x₀)/a = (y-y₀)/b = (z-z₀)/c
- 参数式: x⃗ = a⃗ + λv⃗
- 对应关系:
• 点 (x₀,y₀,z₀) ↔ 点向量 a⃗
• 分母 (a,b,c) ↔ 方向向量 v⃗
-
1
读出初始信息: 从笛卡尔方程中读出点a₀和方向v⃗
→
注意符号,如5x+3意味着x坐标是-3
-
2
找新点: 令λ=1或-1,计算x⃗ = a₀ + λv⃗
→
得到直线上的新点
-
3
找新方向: 将v⃗乘以非零常数
→
得到平行的方向向量
-
4
判断点在线: 代入参数方程,求解λ值
→
如果三个分量得到相同λ,则点在线上
- 参数式: x⃗ = a⃗ + λv₁⃗ + μv₂⃗
- 笛卡尔式: nₓx + nᵧy + nᵧz = d
- 关键关系: 法向量n⃗垂直于平面内任何方向向量
1. 三点 → 参数式:
- 选择一点作为a⃗(如a⃗ = A)
- 连接点得到方向向量(如v₁⃗ = AB⃗, v₂⃗ = AC⃗)
2. 笛卡尔 → 参数式:
- 找点: 给两个变量赋0,解出第三个变量
- 找方向: 寻找满足v⃗·n⃗ = 0的两个不平行向量
3. 参数式 → 笛卡尔式:
- 找法向量: n⃗ = v₁⃗ × v₂⃗(叉积)
- 写方程: nₓx + nᵧy + nᵧz = d
- 求常数d: 将点a⃗代入求d
这个模块将代数计算与几何意义紧密结合,是解决实际几何问题的关键。
- 投影定义: 向量u⃗在向量v⃗上的投影是u⃗在v⃗方向上的"影子"向量
- 投影公式: proj_v⃗(u⃗) = (u⃗·v⃗/|v⃗|²)v⃗
- 公式解读:
• u⃗·v⃗:点积,衡量u⃗在v⃗方向上的"有效长度"
• |v⃗|²:v⃗长度的平方,用于标准化
• 括号内是标量系数,确定"影子"的长度和方向
-
1
计算点积: u⃗·v⃗
-
2
计算模长平方: |v⃗|² = vₓ² + vᵧ² + vᵧ²
-
3
计算标量系数: k = (u⃗·v⃗)/|v⃗|²
-
4
最终结果: 投影向量 = k·v⃗
- 几何意义: 点B到直线l的距离 = 三角形中从顶点B到对边的高
- 计算方法: 距离 = |AB⃗ - proj_v⃗(AB⃗)|
- 几何原理: 构建直角三角形,求垂直向量的长度
-
1
确定三要素: 直线上的点A,直线外的点B,方向向量v⃗
-
2
构建连接向量: AB⃗ = B - A(斜边)
-
3
计算投影向量: proj_v⃗(AB⃗)(邻边)
-
4
计算垂直向量: w⃗ = AB⃗ - proj_v⃗(AB⃗)(对边)
-
5
求距离: 距离 = |w⃗|
- 交点定义: 唯一同时满足直线方程和平面方程的点
- 解题本质: 解联立方程组
-
1
拆解参数方程: 将x⃗ = a⃗ + λv⃗拆成x, y, z关于λ的表达式
-
2
代入笛卡尔方程: 将三个表达式代入平面方程
-
3
解出λ: 得到关于λ的线性方程并求解
-
4
求交点坐标: 将λ值代回参数方程
直线: x⃗ = (2,3,0) + λ(4,1,-2)
平面: 3x + 4y - 4z = -30
解题过程:
- 拆解: x = 2 + 4λ, y = 3 + λ, z = -2λ
- 代入: 3(2 + 4λ) + 4(3 + λ) - 4(-2λ) = -30
- 化简: 6 + 12λ + 12 + 4λ + 8λ = -30 ⟹ 24λ = -48 ⟹ λ = -2
- 交点: (-6, 1, 4)
- 共线检验: 本质是检验相连向量是否平行(标量倍数关系)
- 平行四边形: 关键在于根据顶点顺序确定正确的对边关系
- 方程转换: 参数方程像"旅游指南",笛卡尔方程像"通行密码"
- 向量投影: 投影 = (比例系数) × (目标方向向量)
- 距离计算: 点到直线距离是向量形式的勾股定理应用
- 交点求解: 直线的"活模板"代入平面的"过滤器"
Algebra Core Concepts Sprint Notes
MATH1131 Lab Test 01 - Algebra Preparation
Vector Fundamentals, Line & Plane Equations, Geometric Operations
This module is the foundation for all subsequent content, focusing on understanding the relationship between points and vectors and how they form geometric shapes.
- Creating vectors from points: Vector from point A to B is AB⃗ = B - A
- Collinear: Three or more points (A, B, C) lie on the same straight line
- Parallel vectors: Two vectors have the same or opposite direction, i.e., v₁ = k·v₂ (k ≠ 0)
-
1
Create connected vectors: Calculate AB⃗ = B - A and BC⃗ = C - B
→
These vectors share common point B
-
2
Find scalar relationship: Check if constant k exists such that BC⃗ = k·AB⃗
→
Test each component: kₓ = x₂/x₁, kᵧ = y₂/y₁, kᵧ = z₂/z₁
-
3
Conclusion: If all three k values are equal, vectors are parallel and share a point
→
Therefore, three points are collinear
- Opposite sides: Opposite sides of a parallelogram are parallel and equal in length
- Vertex order: ABCD and ADBC are different parallelograms with different opposite side relationships
-
1
Draw diagram, identify relationships: Determine opposite sides based on vertex order
→
For ABCD: opposite sides are AB⃗ & DC⃗, AD⃗ & BC⃗
-
2
Convert vectors to coordinates: Choose one vector equation and convert
→
E.g., AB⃗ = DC⃗ ⟹ B - A = C - D
-
3
Solve for unknown point: Use algebraic manipulation
→
D = C - B + A
This module bridges geometric shapes and algebraic expressions, focusing on understanding different equation forms and their conversions.
- Cartesian form: (x-x₀)/a = (y-y₀)/b = (z-z₀)/c
- Parametric form: x⃗ = a⃗ + λv⃗
- Correspondence:
• Point (x₀,y₀,z₀) ↔ Position vector a⃗
• Denominator (a,b,c) ↔ Direction vector v⃗
- Parametric form: x⃗ = a⃗ + λv₁⃗ + μv₂⃗
- Cartesian form: nₓx + nᵧy + nᵧz = d
- Key relationship: Normal vector n⃗ is perpendicular to any direction vector in the plane
This module closely combines algebraic calculations with geometric meaning, being key to solving practical geometric problems.
- Projection definition: The projection of vector u⃗ onto vector v⃗ is the "shadow" of u⃗ in the direction of v⃗
- Projection formula: proj_v⃗(u⃗) = (u⃗·v⃗/|v⃗|²)v⃗
- Formula interpretation:
• u⃗·v⃗: dot product, measures "effective length" of u⃗ in v⃗ direction
• |v⃗|²: square of v⃗'s length, for normalization
• Parenthetical part is scalar coefficient determining shadow's length and direction
- Geometric meaning: Distance from point B to line l = height from vertex B to opposite side in triangle
- Calculation method: Distance = |AB⃗ - proj_v⃗(AB⃗)|
- Geometric principle: Construct right triangle, find length of perpendicular vector
- Intersection definition: The unique point that simultaneously satisfies both line and plane equations
- Solution essence: Solving system of simultaneous equations
- Collinearity test: Essentially testing if connected vectors are parallel (scalar multiple relationship)
- Parallelogram: Key is determining correct opposite side relationships based on vertex order
- Equation conversion: Parametric equations are like "travel guides," Cartesian equations like "access codes"
- Vector projection: Projection = (proportional coefficient) × (target direction vector)
- Distance calculation: Point-to-line distance is application of vector form of Pythagorean theorem
- Intersection solving: Line's "template" substituted into plane's "filter"